메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신용민 (부경대학교) 서효정 (부경대학교)
저널정보
한국수산해양교육학회 수산해양교육연구 수산해양교육연구 제31권 제5호(통권 제101호)
발행연도
2019.10
수록면
1,325 - 1,335 (11page)
DOI
10.13000/JFMSE.2019.10.31.5.1325

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ten years have passed since the implementation of aquaculture insurance. Although it can be said that it has entered into the settlement stage regarding the number of items and subscription rate, there are still more fishermen who are reluctant towards joining and with frequent natural disasters, there is sudden increase in the rate of loss causing burden on the government and the fishermen to rise.
Since natural disasters are becoming larger and more complex, it is necessary to expand insurance items along with insured natural disasters, and as different regions and species are susceptible to different natural disasters, development of insurance reflecting such characteristics is required. In addition, for smooth damage support, realization of damage repair price, damage repair support criteria, etc. are needed, and for the causality investigation of the damaged area, scientific and objective criteria need to be established. It is also required to adopt income security insurance for better comprehensive business stabilization of fisheries households.
In order to alleviate the current stagnating membership rate and the sudden increase in loss rate, a more objective and scientific analysis of the aquaculture insurance is needed. Although accumulation of related data should precede for such reinforcement of quantitative analysis, such data is absent. The problem of absent data and distrust, a common problem in fisheries, should gradually be solved through the adoption of aquaculture surveys and the increase of research support.

목차

Abstract
Ⅰ. 서론
Ⅱ. 양식수산물재해보험 현황
Ⅲ. 양식수산물재해보험의 문제점
Ⅳ. 양식수산물재해보험 활성화 방안
Ⅴ. 결론
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-454-001238058