메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김종해 (대구가톨릭대학교) 강현 (중앙대학교) 김태균 (부산대학교) 인준용 (동국대학교) 이동규 (고려대학교) 이상석 (인제대학교)
저널정보
대한마취통증의학회(구 대한마취과학회) Korean Journal of Anesthesiology Korean Journal of Anesthesiology Vol.70 No.5
발행연도
2017.1
수록면
511 - 519 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bias affects the true intervention effect in randomized controlled trials (RCTs), making the results unreliable. We evaluated the risk of bias (ROB) of quasi-RCTs or RCTs reported in the Korean Journal of Anesthesiology (KJA) between 2010 and 2016. Six kinds of bias (selection, performance, detection, attrition, reporting, and other biases) were evaluated by determining low, unclear, or high ROB for eight domains (random sequence generation, allocation concealment, blinding of participants, blinding of personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias) according to publication year. We identified 296 quasi-RCTs or RCTs. Random sequence generation was performed better than allocation concealment (51.7% vs. 20.9% for the proportion of low ROB, P < 0.001 and P = 0.943 for trend, respectively). Blinding of outcome assessment was superior to blinding of participants and personnel (42.9% vs. 15.5% and 23.0% for the proportion of low ROB, P = 0.026 vs. P = 0.003 and 0.896 for trend, respectively). Handling of incomplete outcome data was performed best with the highest proportion of low ROB (84.8%). Selective reporting had the lowest proportion of low ROB (4.7%). However, the ROB improved year by year (P < 0.001 for trend). Authors and reviewers should consider allocation concealment after random sequence generation, blinding of participants and personnel, and full reporting of results to improve the quality of RCTs submitted hereafter for publication in the KJA.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0