메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한한방안이비인후피부과학회 한방안이비인후피부과학회지 한방안이비인후피부과학회지 제30권 제2호
발행연도
2017.1
수록면
1 - 18 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objectives : This review aims to evaluate a risk of bias by risk of bias tool and RoBANS(Risk of Bias Assessment tool for Non-randomized Study) tool for clinical trial papers proving treatment effect of Korean medicines to alopecia and provides the newest reason of effectiveness of herbs to alopecia. Methods : Data were collected through electronic database including NDSL, KISS, KMBASE, Koreantk, OASIS, KoreaMed, KISTI, Pubmed, Cochrane CENTRAL and CINAHL. Two experts in Oriental Medicine assessed risk of bias of randomized controlled trials by Cochrane group's Risk of Bias tool and non-randomized controlled trials by RoBANS tool after searching, reviewing and selecting papers. Results : Total number of selected trials is 20 including 4 randomized controlled trial, 13 non-randomized controlled trials and 3 case reports. This study evaluate the risk of bias of 17 papers including 4 randomized controlled trials and 13 non-randomized controlled trials except 3 case reports by risk of bias tool and RoBANS tool. All papers of randomized controlled trials are evaluated unclear for random sequence generation and allocation concealment as there are no word on them. And all papers of non-randomized controlled trials are evaluated unclear for blinding of outcome assessments and relatively low for others. Conclusions : Korean medicine intervention can be an effective for treatment in alopecia. It was evaluated by hair density, thickness and expert panel assessment of photographs and all results are statistically significant. But enhancing levels of evidence, we must try to reduce bias in researches and report a safety, protocol and IRB.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0