메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
A. P. Santhakumaran (Hindustan Institute of Technology and Science) P. Titus (Anna University) K. Ganesamoorthy (Coimbatore Institute of Technology)
저널정보
장전수학회 Advanced Studies in Contemporary Mathematics Advanced Studies in Contemporary Mathematics Vol.26 No.2
발행연도
2016.1
수록면
371 - 378 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For a connected graph G = (V,E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u−v monophonic path in G. A u − v path of length dm(u, v) is called a u − v detour monophonic. For subsets A and B of V , the monophonic distance dm(A,B) is defined as dm(A,B) = min{dm(x, y) : x ∈ A, y ∈ B}. A u−v path of length dm(A, B) is called an A−B detour monophonic path joining the sets A,B ⊆ V, where u ∈ A and v ∈ B. A set S ⊆ E is called an edge-to-vertex detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a detour monophonic path joining a pair of edges of S. The edge-to-vertex detour monophonic number dmev(G) of G is the minimum cardinality of its edge-to-vertex detour monophonic sets and any edge-to-vertex detour monophonic set of car- dinality dmev(G) is an edge-to-vertex detour monophonic basis of G. An edge-to-vertex detour monophonic set S in a connected graph G is called a minimal edge-to-vertex detour monophonic set of G if no proper subset of S is an edge-to-vertex detour monophonic set of G. The upper edge-to-vertex detour monophonic number dm+ ev(G) of G is the maxi- mum cardinality of a minimal edge-to-vertex detour monophonic set of G. We determine bounds for it and certain general properties of these concepts are studied. It is shown that for every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G with dmev(G) = a and dm+ ev(G) = b.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0