메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Salim Lahmiri (McGill University) Debra Ann Dawson (McGill University) Amir Shmuel (McGill University)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.8 No.1
발행연도
2018.1
수록면
29 - 39 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Parkinson’s disease (PD) is a widespreaddegenerative syndrome that affects the nervous system. Itsearly appearing symptoms include tremor, rigidity, andvocal impairment (dysphonia). Consequently, speechindicators are important in the identification of PD basedon dysphonic signs. In this regard, computer-aided-diagnosissystems based on machine learning can be useful inassisting clinicians in identifying PD patients. In this work,we evaluate the performance of machine learning basedtechniques for PD diagnosis based on dysphonia symptoms. Several machine learning techniques were consideredand trained with a set of twenty-two voice disordermeasurements to classify healthy and PD patients. Thesemachine learning methods included linear discriminantanalysis (LDA), k nearest-neighbors (k-NN), naı¨ve Bayes(NB), regression trees (RT), radial basis function neuralnetworks (RBFNN), support vector machine (SVM), andMahalanobis distance classifier. We evaluated the performanceof these methods by means of a tenfold cross validationprotocol. Experimental results show that the SVMclassifier achieved higher average performance than allother classifiers in terms of overall accuracy, G-mean, andarea under the curve of the receiver operating characteristicplot. The SVM classifier achieved higher performancemeasures than the majority of the other classifiers also interms of sensitivity, specificity, and F-measure statistics. The LDA, k-NN and RT achieved the highest averageprecision. The RBFNN method yielded the highestF-measure.; however, it performed poorly in terms of otherperformance metrics. Finally, t tests were performed toevaluate statistical significance of the results, confirmingthat the SVM outperformed most of the other classifiers onthe majority of performance measures. SVM is a promisingmethod for identifying PD patients based on classificationof dysphonia measurements.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0