메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ilias Tougui (Mohammed V University in Rabat) Abdelilah Jilbab (Mohammed V University in Rabat) Jamal El Mhamdi (Mohammed V University in Rabat)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제4호
발행연도
2020.1
수록면
274 - 283 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Parkinson’s disease (PD) is the second most common neurodegenerative disorder; it affects more than 10 millionpeople worldwide. Detecting PD usually requires a professional assessment by an expert, and investigation of the voice as abiomarker of the disease could be effective in speeding up the diagnostic process. Methods: We present our methodology inwhich we distinguish PD patients from healthy controls (HC) using a large sample of 18,210 smartphone recordings. Thoserecordings were processed by an audio processing technique to create a final dataset of 80,594 instances and 138 featuresfrom the time, frequency, and cepstral domains. This dataset was preprocessed and normalized to create baseline machinelearningmodels using four classifiers, namely, linear support vector machine, K-nearest neighbor, random forest, and extremegradient boosting (XGBoost). We divided our dataset into training and held-out test sets. Then we used stratified5-fold cross-validation and four performance measures: accuracy, sensitivity, specificity, and F1-score to assess the performanceof the models. We applied two feature selection methods, analysis of variance (ANOVA) and least absolute shrinkageand selection operator (LASSO), to reduce the dimensionality of the dataset by selecting the best subset of features that maximizesthe performance of the classifiers. Results: LASSO outperformed ANOVA with almost the same number of features. With 33 features, XGBoost achieved a maximum accuracy of 95.31% on training data, and 95.78% by predicting unseen data. Conclusions: Developing a smartphone-based system that implements machine-learning techniques is an effective way todiagnose PD using the voice as a biomarker.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0