메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hamed Shabani (Shahed University) Mohammad Mikaili (Shahed University) Seyed Mohammad Reza Noori (Shahed University)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.6 No.3
발행연도
2016.1
수록면
196 - 204 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose In this paper, the aim is to detect drowsiness usingone of the well-known nonlinear signal analysis methodsknown as Recurrence Quantification Analysis (RQA). Wewant to show that by assuming brain as a chaotic system, thenumber of recurrences in the phase space of this system willincrease during drowsiness state. Methods Determinism (DET) feature extracted by Recurrencequantification analysis (RQA) method has been used to detectthese recurrences. Furthermore, eleven other features of RQAfor the purpose of comparing their capability with DETfeature have been used to detect drowsiness. Three differentfeature subsets are extracted from these twelve features. Thefirst feature subset is called DET feature. The second featuresubset is obtained by applying Linear Discriminant Analysis(LDA) technique on the twelve dimensional feature set. Thethird feature subset is made by Sequential Forward Selection(SFS) method. To reach the highest value of accuracy,specificity and sensitivity, the three evaluated feature setshave been applied to four different classifiers known as Knearestneighbor (KNN), Support Vector Machine classifier(SVM), Naïve Bayes and Fisher Linear Discriminant Analysis. A K-means clustering method has also been applied on thedata to ensure that the criteria used for labeling drowsy andalert segments are suitable. Results The Results reveal that DET feature could achievethe best performance in drowsiness detection by SVMclassifier with an accuracy of more than ninety percentage. Conclusions These findings approve that DET measure is areasonable feature for the purpose of drowsiness detection.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0