메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장정우 (서울대학교) 김유리 (서울대학교) 이채은 (서울대학교) 송윤규 (서울대학교)
저널정보
한국과학기술원 정보전자연구소 IDEC Journal of Integrated Circuits and Systems IDEC Journal of Integrated Circuits and Systems Vol.7 No.2
발행연도
2021.1
수록면
12 - 16 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, a 32-channel low-power neural recording system was developed to analyze neural activity. Neural activity recording systems play an important role in neurosciences as well as the development of neuroprosthetic devices to treat neurological diseases and assist in recovery from disabilities. For example, monitoring neural signals allows prediction of the behaviors of paralyzed patients or explanation for the causality between behavior and neural activity. A conventional recording system with an integrated circuit has several limitations in terms of noise and power consumption. Herein, we propose a 32-channel low-power fully implantable neural signal recording system; a low-noise amplifier, a lowpass filter, an analog multiplexer, and a shift register were designed for the system. The experimental results highlight the low noise and adequate frequency response of the system. Further, in the experiments, ECG signals with magnitudes of up to 100 µV could be detected clearly. For the 32-channel neural recording system, a low supply voltage of only 1.2 V is needed, and the total power consumption is 60 µW, with a total gain of 58 dB and input referred noise of 3 µVrms. The bandwidth of the system is 2–300 Hz for measuring target ECoG signals. The system was designed with a standard 0.18 µm CMOS technology to measure neural signals while maintaining very low power consumption.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0