메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권기태 (강릉원주대학교) 오지원 (아주대학교) 곽병문 (세명대학교) 이미기 (재단법인 경기도경제과학진흥원) 빈범호 (아주대학교)
저널정보
한국소프트웨어감정평가학회 한국소프트웨어감정평가학회논문지 한국소프트웨어감정평가학회 논문지 제15권 제1호
발행연도
2019.1
수록면
79 - 86 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터의 차원축소는 요소들의 공통성을 파악해 영향력 있는 중요한 특징 요소를 추출하여 간소화함으로써 복잡함을 줄이고 다중 공선성 문제를 해결한다. 그리고 중복 및 노이즈 검출을 함으로써 불필요함을 줄인다. 이에 본 논문에서는 PCA(Prinicipal Component Analysis)을 적용한 결함 심각도 기반 차원 축소 모델을 제안한다. 제안된 모델은 결함 심각도가 있는 NASA 데이터 세트인 PC4에 적용하여 결함 심각도에 영향을 주는 속성의 차원수를 검증한다. 그 다음 데이터의 차원을 축소한 후 비교 분석한다. 실험결과, PC4의 적합한 차원수는 2~3개였고 그룹화를 통해 차원 축소가 가능한 것을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0