메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍의석 (성신여자대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제20권 제5호
발행연도
2015.5
수록면
73 - 81 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소프트웨어 결함 예측 연구들의 대부분은 입력 개체의 결함 유무를 예측하는 이진 분류 모델들에 관한 것들이다. 하지만 모든 결함들이 같은 심각도를 갖지는 않으므로 예측 모델이 입력 개체의 결함경향성을 몇 개의 심각도 범주로 분류할 수 있다면 훨씬 유용하게 사용될 수 있다. 본 논문에서는 전통적인 복잡도와 크기 메트릭들을 입력으로 하는 심각도 기반 결함 예측 모델을 제안하였다. 학습 알고리즘은 많이 사용되는 네 개의 기계학습 기법들을 사용하였으며, 모델 구조는 삼진 분류 모델로 하였다. 모델 성능 평가를 위해 실험 데이터는 두 개의 NASA 공개 데이터 집합을 사용하였고, 평가 측정치는 Accuracy를 이용하였다. 평가 실험 결과는 역전파 신경망 모델이 두 데이터 집합에 대해 각각 81%와 88% 정도의 Accuracy 값으로 가장 좋은 성능을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 모델 제작
Ⅳ. 실험 및 평가
Ⅴ. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-325-001889508