메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승현 (국민대학교) 김도연 (국민대학교) 최상일 (단국대학교) 정구민 (국민대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제13권 제6호
발행연도
2020.12
수록면
461 - 469 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 손글씨 숫자 데이터셋, 얼굴 데이터셋의 중요영역 추출을 위한 PCA 기반의 특징되먹임방법을 제안한다. 이전의 LDA 기반의 특징되먹임 방법을 확장하여 PCA 기반 특징되먹임 방법이 제안된다. 제안된 방법에서 데이터에 차원 축소 머신러닝 알고리듬 중 하나인 PCA 기법을 적용하여 데이터를 중요한 특징 차원들로 축소한다. 차원 축소과정에서 도출되는 weight를 통해 축소된 각 차원 축에서의 데이터 중요 지점을 확인한다. 각 차원 축은 축의 고유값의 크기에 따라 전체 데이터에서의 가중치가 다르다. 이에 각 차원 축의 고유값의 크기에 비례하는 가중치를 부여하여 각 차원 축에서의 데이터 중요 지점을 합하는 연산 과정을 거친다. 연산 과정을 통해 얻어진 데이터에 Threshold를 적용하여 데이터의 중요 영역을 구한다. 그 후 도출된 데이터의 중요 영역에 원본데이터로 역매핑을 유도하여 원본 데이터 공간에서 중요영역을 선택한다. MNIST 데이터셋에 대한 실험 결과를 확인하고 기존의 LDA 기반의 특징되먹임 방법을 통한 결과와 비교를 하여 PCA기반 특징되먹임을 기반한 패턴 인식 방법의 유효성과 가능성을 확인한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. PCA를 이용한 특징 되먹임
4. PCA 특징되먹임 실험 결과
5. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0