메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김민웅 (한림대성심병원 응급의학과) 정재원 (한림대의료원 의료인공지능센터) Se Jin Park (한림대의료원 의료인공지능센터) 박영순 (한림대성심병원 응급의학과) 이정현 (한림대학교성심병원 응급의학과) 양원석 (한림대성심병원 응급의학과) 김진혁 (한림대학교) 조범주 (한림대학교) 하상욱 (한림대성심병원 응급의학과)
저널정보
대한응급의학회 Clinical and Experimental Emergency Medicine Clinical and Experimental Emergency Medicine Vol.8 No.2
발행연도
2021.1
수록면
120 - 127 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective Recent studies have suggested that deep-learning models can satisfactorily assist in fracture diagnosis. We aimed to evaluate the performance of two of such models in wrist fracture detection. Methods We collected image data of patients who visited with wrist trauma at the emergency department. A dataset extracted from January 2018 to May 2020 was split into training (90%) and test (10%) datasets, and two types of convolutional neural networks (i.e., DenseNet-161 and ResNet-152) were trained to detect wrist fractures. Gradient-weighted class activation mapping was used to highlight the regions of radiograph scans that contributed to the decision of the model. Performance of the convolutional neural network models was evaluated using the area under the receiver operating characteristic curve. Results For model training, we used 4,551 radiographs from 798 patients and 4,443 radiographs from 1,481 patients with and without fractures, respectively. The remaining 10% (300 radiographs from 100 patients with fractures and 690 radiographs from 230 patients without fractures) was used as a test dataset. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of DenseNet-161 and ResNet-152 in the test dataset were 90.3%, 90.3%, 80.3%, 95.6%, and 90.3% and 88.6%, 88.4%, 76.9%, 94.7%, and 88.5%, respectively. The area under the receiver operating characteristic curves of DenseNet-161 and ResNet-152 for wrist fracture detection were 0.962 and 0.947, respectively. Conclusion We demonstrated that DenseNet-161 and ResNet-152 models could help detect wrist fractures in the emergency room with satisfactory performance.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0