메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Won Kyoung Cho (The Catholic University of Korea) 안문배 (The Catholic University of Korea) Eun Young Kim (LG Chem Ltd.) Kyoung Soon Cho (Department of Pediatrics Bucheon St. Mary's Hospital) 정민호 (가톨릭대학교) 서병규 (가톨릭대학교)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.35 No.19
발행연도
2020.1
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The first-year growth in response to growth hormone (GH) treatment seems to be the most important factor in determining the overall success of GH treatment. Methods: Data from children (n = 345) who were in the LG Growth Study Database were used to develop a model. All subjects had been diagnosed with idiopathic growth hormone deficiency (GHD) and presented in a prepubertal state during the first year of GH treatment. Results: The Δheight standard deviation score (SDS) during 1st year of GH treatment was correlated positively with weight-SDS (β = 0.304, P < 0.001), body mass index (BMI)-SDS (β = 0.443, P < 0.001), paternal height-SDS (β = 0.296, P = 0.001), MPH-SDS (β = 0.421, P < 0.001) and MPH SDS minus baseline height SDS (β = 0.099, P < 0.001) but negatively with chronological age (β = −0.294, P < 0.001), bone age (β = −0.249, P < 0.001). A prediction model of 1st year growth in response to GH treatment in prepubertal Korean children with idiopathic GHD is as follows: Δheight SDS during 1st year of GH treatment = 1.06 − 0.05 × age + 0.09 × (MPH SDS minus baseline height SDS) + 0.05 × BMI SDS. This model explained 19.6% of the variability in the response, with a standard error of 0.31. Conclusion: The present model to predict first-year response to GH treatment might allow more tailored and personalized GH treatment in Korean prepubertal children with idiopathic GHD.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0