메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이현영 (국민대학교) 강승식 (국민대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제10권 제1호
발행연도
2021.1
수록면
16 - 24 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0