메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유홍연 (동아대학교) 고영중 (동아대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.3
발행연도
2017.3
수록면
306 - 313 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서 가장 우수한 성능을 보여주고 있는 모델은 Bidirectional LSTM CRFs 모델이다. 이러한 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이다. 따라서 입력이 되는 단어를 잘 표현하기 위하여 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 음절 기반에서 확장된 단어 임베딩 벡터, 그리고 개체명 사전 자질 벡터를 사용한다. 최종 단어 표상 확장 결과 사전 학습된 단어 임베딩 벡터만 사용한 것 보다 8.05%p의 성능 향상을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0