메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희영 (고려대학교) 김주현 (충남대학교) 주경희 (한신대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제22권 제6호
발행연도
2020.1
수록면
2,225 - 2,235 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the tremendous deployment of different kinds of sensors and actuators, the Internet of Things (IoT) emerges as an advanced method to connect devices and collect the status data. Aided by the use of a large amount of operation data, the data-driven fault diagnosis is considered as a modern technique in Industry 4.0 and has become a research hotspot in recent years. In the area of urban rail transit, the point machine is a critical component that is used to safely switch the train direction. In this article, we propose a novel fault diagnosis scheme for railway point machines (RPMs) using electrical signals. RPMs are devices that move a switch blade from its current position to the opposite position to offer different routes to trains. RPMs failures often lead to service delays or dangerous situations; therefore, detecting early signs of their deteriorating condition is essential. We present a powerful and interpretable method that relies on the construction of the smoothed periodogram, which are estimator of spectral density. Experimental results demonstrate the efficacy of the proposed method.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0