메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희영 (고려대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제22권 제5호
발행연도
2020.1
수록면
1,695 - 1,706 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study addresses the problem of monitoring and forecasting of particulate matter (PM) data, focusing, in particular, on high-level , which is known to adversely impact human mortality and morbidity. We use hourly data, collected over a period of 3 months between October 1, 2018, to December 31, 2018, from 40 stations located in the Seoul metropolitan area of South Korea. We model the number of regions corresponding to “bad” or “very bad” categories of the density. It is challenging to model the data set, not only because it has excessive zero, the right tail of the distribution is extremely long, but also because the sample autocorrelation function of the series shows the serial correlation. Furthermore, it exhibits heteroscedasticity. Ignoring the zero-inflation and the serial dependence might produce inaccurate results. In this paper, several zero-inflated models with explanatory variables and pure time series models without explanatory variables are used to forecast future values of the aforementioned variable and generate confidence intervals with adjustments for the count time series distribution and excess zeros.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0