메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심나 (강원대학교 대학원)
저널정보
한말연구학회 한말연구 한말연구 제59호
발행연도
2021.1
수록면
197 - 226 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Korean hanja affixes and Chinese affixes play several roles and often belong to different categories, thus limiting the possibility of categorization. In order to overcome these limitations, this study investigates whether the prototype theory, a cognitive linguistics theory widely used in numerous domains, can be employed. First, I examine the Korean and Chinese affixes and their particularities. Then, I review the existing literature and show the problems caused by the classical theory of categorization and, in order to solve these problems, I consider the prototype theory and its particularities. After that, I analyze the specificities of the prototypical categorization of both hanja and Chinese affixes. By doing so, I demonstrate that the prototype theory can be used successfully. Hanja affixes, historically represented as derivatives, are affected by other categories’ factors; they are connected to other linguistic factors from other categories. In other words, Chinese characters were used in the Korean vocabulary system as independent nouns or dependent word root; however, as time passed and circumstances evolved, their usage expanded and they acquired an affix function. The prototype theory originates in the critic of Aristoteles’ classical theory of categorization used in linguistics and philosophy. The categorization of hanja affixes and Chinese affixes have problems such as the ‘indetermination of the categorization’, ‘blurriness of categories’ limits’, ‘hierarchy of terms within a category’, and using the prototype theory can help when making categorization. Consequently, the prototype theory is more relevant than the classical approach.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0