메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Erdo?ar Nazlı (Hacettepe University Turkey) Akkın Safiye (Hacettepe University Turkey) Nielsen Thorbjorn T. (University of Aalborg Denmark) Ozcelebi Esin (Hacettepe University Turkey) Erdo?du Batuhan (Hacettepe University Turkey) Nemutlu Emirhan (Hacettepe University Turkey) ?skit Alper B. (Hacettepe University Turkey) Bilensoy Erem (Hacettepe University Turkey)
저널정보
한국약제학회 Journal of Pharmaceutical Investigation Journal of Pharmaceutical Investigation 제51권 제3호
발행연도
2021.1
수록면
297 - 310 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Aprepitant (APRT), a selective neurokinin 1 antagonist, is clinically used in the prevention of acute and delayed chemotherapy-induced nausea and vomiting. The low solubility of APRT, which limits its oral bioavailability, is overcome by nanonization. This study aimed to design and evaluate novel in vitro and in vivo chitosan (CS)?polyethylene glycol (PEG)-coated cyclodextrin (CD) nanoparticles and nanocapsules to enhance the solubility and oral bioavailability of APRT. Methods A novel amphiphilic CD derivative with alkyl chains of 9 carbons (ACD-C9) was synthesized to form nanoparticles and nanocapsules by using nanoprecipitation. The nanocarriers were coated with the CS?PEG conjugate to increase their biological interaction with cell membranes via the positive charge and penetration-enhancer properties of CS. The nanosystems were evaluated for particle size, surface charge, drug loading, imaging, release, cell culture, and oral bioavailability in an animal model. Results The CS?PEG-coated nanosystems had particle size of 400?550 nm, a narrow polydispersity index, positive zeta potential, and favorable drug loading (55 and 93% for nanoparticles and nanocapsules, respectively). Sustained release was observed within 24 h. Blank nanoparticles and nanocapsules were non-cytotoxic against the L929 cell line. The intestinal permeability of the nanocarriers was 2?threefold (2-3 fold) higher than that of the drug solution, and the nanocapsules afforded the highest APRT permeability through Caco-2 cells. Oral bioavailability studies in rats revealed comparable degree of drug absorption between nanocapsules and commercial APRT products. Conclusion Oral ACD-C9 nanocapsules have the potential for the treatment of chemotherapy-induced nausea and vomiting.

목차

등록된 정보가 없습니다.

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0