메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Joanna S. Cavalier (Duke University Medical Center) Igor Klem (Duke University Medical Center)
저널정보
한국심초음파학회 Journal of Cardiovascular Imaging Journal of Cardiovascular Imaging 제29권 제2호
발행연도
2021.1
수록면
91 - 107 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Chest pain is one of the most common presenting symptoms in the emergency department (ED). Among patients with abnormal troponins, it is imperative to quickly and accurately distinguish type 1 acute myocardial infarction (AMI) from other etiologies of myocardial injury. Although high-sensitivity troponin assays introduced a high negative predictive value for AMI, they have exposed the need for diagnostic modalities that can determine the etiology of acute myocardial injury. Cardiac magnetic resonance imaging (CMR) is an effective tool to risk stratifying chest pain among patients in the ED. CMR is non-invasive and has a lower cost of care and shorter length of stay compared to those of invasive coronary angiography. It also provides detailed information on cardiac morphology, function, tissue edema, and location and pattern of tissue damage that can help to differentiate many etiologies of cardiac injury. CMR is particularly useful to distinguish chest pain due to type 1 AMI versus supply-demand mismatch due to acute cardiac noncoronary artery disease. A detailed review of the literature has shown that CMR with stress testing is safe to use in patients presenting to the ED with chest pain, with or without abnormal troponins. CMR is a useful, safe, economical, and effective alternative to the traditional diagnostic tools that are typically used in this patient population. It is a practical tool to risk-stratify patients with possible cardiac pathology and to clarify diagnosis without invasive testing.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0