메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조수빈 (부경대학교) 윤유정 (부경대학교) 김서연 (부경대학교) 정예민 (부경대학교) 김근아 (부경대학교) 강종구 (부경대학교) 김광진 ((주)일렉오션) 조재일 (전남대학교) 이양원 (부경대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제2호
발행연도
2021.1
수록면
337 - 357 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
노지에서 재배되는 벼는 필연적으로 기상요소의 영향을 받을 수밖에 없으며, 벼 생장에 영향을 미치는최적의 기상자료 확보 및 변수 선정은 벼 수확량 예측 모델링에 있어 매우 중요하다. 본 연구에서는 1996-2019 년의 7월, 8월, 9월에 대하여, 다종의 기상자료 비교평가를 통해 우리나라 벼 수확량 모델링에 대한 적합성을 살펴보고, 기상요소와 벼 수확량 사이의 비선형적인 관계를 고려하여 기계학습 기법을 이용한 수확량 하인드캐스트 실험을 수행하고자 한다. 다종의 기상자료로는, 기상청 ASOS 지상관측과 함께, CRU-JRA ver. 2.1, ERA5 재분석장을 사용하였다. 이들 기상자료에서 공통적으로 도출할 수 있는 월 단위 기온, 상대습도, 일사량, 강수량 변수에 대한 비교를 통하여, 각 자료의 특성 및 벼 수확량과의 연관성을 분석하였다. CRU-JRA ver. 2.1 재분석장은 전반적으로 타 자료와 높은 일치성을 나타냈으며, 변수별 특징을 보았을 때, 상대습도는 벼 수확량에미치는 영향이 거의 없었으나, 일사량은 벼 수확량과의 상관성이 상당히 높은 것으로 나타났다. 7월, 8월, 9월의 기온, 일사량, 강수량을 랜덤 포리스트 모델에 투입하여 벼 수확량 하인드캐스트 실험을 수행한 결과, CRUJRA ver. 2.1 재분석장은 세 종류 기상자료 중에 가장 높은 정확도를 나타냈다(CC = 0.772). 또한 예측 모델에서변수의 중요도는 일사량이 가장 높게 나타나, 기존의 농학적 연구결과와 일치하였다. 본 연구는 벼 수확량 예측을 위한 다종 기상자료의 선택에 있어 하나의 합리적 방법을 제시한 것으로써 의미가 있다고 하겠다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0