메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim Ji Eun (Department of Psychiatry School of Medicine Kyungpook National University) Lee Seung Jae (Department of Psychiatry School of Medicine Kyungpook National University)
저널정보
대한신경정신의학회 PSYCHIATRY INVESTIGATION PSYCHIATRY INVESTIGATION 제17권 제12호
발행연도
2020.1
수록면
1,226 - 1,235 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective There have been several studies investigating the relationships between dysfunctional beliefs and obsessive-compulsive (OC) symptoms in obsessive-compulsive disorder (OCD). However, studies about the relationships between dysfunctional beliefs, especially thought-action fusion (TAF), and OC symptom dimensions have been scarce. Therefore, this study examined to what extent and how TAF subcomponents account for unique variability in four OC symptom dimensions.Methods Sixty-five patients with OCD and 45 healthy controls aged between 18 and 30 years completed measures for OC symptom dimensions, OC symptoms, and dysfunctional beliefs such as TAF, trait-guilt, and inflated responsibility.Results Three facets of TAF were exclusively associated with two symptom domains, namely, responsibility for harm and unacceptable thoughts, and explained the additional but small amount of variance to predict these two domains. In particular, the likelihood-others TAF positively predicted the unacceptable thoughts domain, whereas the likelihood-self TAF negatively predicted the aforementioned domain. For OC symptoms measured by the OC Inventory, no TAF components predicted the corresponding obsessing and mental neutralizing symptoms.Conclusion This study provides supporting evidence that the three TAF subcomponents may be differently associated with certain OC symptom dimensions, and a dimensional approach may complement typical symptom-oriented OC measures.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0