메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Li Zhaofeng (School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 5100) Chen Si-Qian (School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523) Cao Xiao (Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industr) Li Lin (School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523) Zhu Jie (School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523) Yu Hongpeng (School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 5100)
저널정보
한국미생물생명공학회 Journal of Microbiology and Biotechnology Journal of Microbiology and Biotechnology 제31권 제3호
발행연도
2021.1
수록면
429 - 438 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0