메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
지봉준 (포항공과대학교)
저널정보
한국건설순환자원학회 한국건설순환자원학회논문집 건설순환자원학회논문집 제9권 제3호
발행연도
2021.9
수록면
348 - 355 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
도로 포장에 널리 사용되는 아스팔트는 도로가 노출되는 환경에 따라 요구되는 물리적 특성이 상이하다. 이에 따라 첨가제의 배합에 따라 아스팔트가 어떤 물리적 특성을 나타내는지 평가하고 도로의 교통, 기후 환경에 맞추어 적절한 배합을 선택하는 것이 아스팔트 도로의 수명을 확보하기 위해 필수적이다. 아스팔트의 다양한 물리적 특성 중 소성변형에 대한 저항성을 측정하기 위해서는 Dynamic shear rheometer(DSR) 테스트를 주로 사용한다. 하지만 DSR 테스트는 실험 세팅에 따라 결과가 상이하고 특정 온도 범위 내에만 측정이 가능한 단점이 있다. 따라서 본 연구에서는 DSR 테스트의 단점을 극복하고자, Atomic force microscopy로부터 수집된 이미지를 학습하여 레올로지적 특성을 예측하고자 했다. 딥러닝 아키텍처 중 하나인 EfficientNet을 통해 이미지를 학습하였고 딥러닝 모델의 한계인 많은 데이터를 요구한다는 점을 극복하기 위해 전이학습을 이용하여 학습을 진행하였다. 학습된 모델은 이종의 첨가제를 사용하였음에도 높은 정확도로 아스팔트 바인더의 레올로지적 특성을 예측하였다. 특히, 전이학습을 사용하지 않았을 때와 비교하여 빠르게 학습이 가능했다.

목차

1. 서론
2. 이론적 배경
3. 실험
4. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0