메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김대엽 (Suwon University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제25권 제3호
발행연도
2021.9
수록면
451 - 461 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 스마트 기기의 보급으로 인하여 악성코드로 인한 피해를 더욱 심각해지면서 머신러닝 기술을 활용한 악성코드 탐지 기술이 주목 받고 있다. 그러나 코드의 단편적인 특성만을 기반으로 머시러닝의 학습 데이터를 구성할 경우, 이를 회피하는 변종 및 신종 악성코드는 여전히 제작하기 쉽다. 이와 같은 문제를 해결하기 위한 방법으로 악성코드의 함수호출 관계를 학습 데이터로 사용하는 연구가 주목받고 있다. 특히, GNN을 활용하여 그래프의 유사도를 측정함으로써 보다 향상된 악성코드 탐지가 가능할 것으로 예상된다. 본 논문에서는 GNN을 악성코드 탐지에 활용하기 위해 바이너리 코드로부터 함수 호출 그래프를 생성하는 효율적인 방안을 제안한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 함수 호출 그래프(FCG)
Ⅲ. FCG 분석
Ⅳ. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0