메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종운 (건양대학교) 이현주 (건양대학교) 이영식 (건양대학교) 함수림 (건양대학교) 조현석 (한국근로복지공단) 태기식 (건양대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제10호
발행연도
2021.10
수록면
721 - 727 (7page)
DOI
10.5302/J.ICROS.2021.21.0088

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Training data of the deep learning model for the control of the above-knee prosthesis should have a sufficient amount of data to fit with the model. Also, this data can be used for gait classification to control the prosthesis. However, in real-time control, the number of the gait dynamics data counted by the sensor is only measured to the level that the deep learning model is difficult to learn., In this study, the most efficient deep learning model case was developed to resolve this problem in the case of a real-time control situation where data measurement time is insufficient. The data is collected through a hall sensor, load cell and Inertial Measurement Unit (IMU) mounted on the above-knee prosthesis. Subsequently, the collected data is divided into 5 phases (Loading Response (LR), Mid Stance (MS), Push Off (PO), Early Swing (ES), and Late Swing (LS)) of the gait cycle according to the point of inflection of hall sensors and load cells. Afterward, training data of the deep learning were generated by sliding window algorithm and the treated data was exercised on four deep learning models by changing the value of width and depth configurations. The results are assessed on accuracy, loss and F1-Score. In conclusion, the loss function statistically decreased in the case of the values of width and depth of the deep learning model were low. Accuracy and F1-Score were not shown significant difference statistically. Therefore, the results provided an efficient deep learning model for above-knee prosthesis to gait analysis and expected to lead to a more reasonable gait model for the control of the above-knee prosthesis via a more detailed gait classification study in the future.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 연구 결과
Ⅳ. 결론
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0