메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
황용해 (경희대학교) 김준식 (경희대학교) 김규헌 (경희대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2021 하계학술대회
발행연도
2021.6
수록면
147 - 150 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 컴퓨터 그래픽 기술이 발전함에 따라 가상으로 만들어낸 객체와 현실 객체 사이의 분간이 어려워지고 있으며, AR/VR/XR 등의 서비스를 위해 현실 객체를 컴퓨터 그래픽으로 표현하는 기술의 연구가 활발. 히 진행되고 있다 포인트 클라우드는 현실 객체를 표현하는 기술 중의 하나로 객체의 표면을 수많은 3차원의 점으로 표현하며, 2차원 영상보다 더욱 거대한 데이터 크기를 가지게 된다. 이를 다양한 서비스에 응용하기 위해서는 3차원 데이터의 특징에 맞는 고효율의 압축 기술이 필요하며, 국제표준기구인 MPEG에서는 연속적인 움직임을 가지는 동적 포인트 클라우드를 2차원 평면으로 투영하여 비디오 코덱을 사용해 압축하는 Video-based Point Cloud Compression (V-PCC) 기술이 연구되고 있다. 포인트 클라우드를 2차원 평면에 투영하는 방식은 점유 맵 (Occupancy Map), 기하 영상 (Geometry Image), 속성 영상 (Attribute Image) 등의 2차원 정보와 보조 정보를 사용해 압축을 진행하고, 부호화 과정에서는 보조 정보와 2차원 영상들의 정보를 사용해 3차원 포인트 클라우드를 재구성한다. 2차원 영상을 사용해 포인트 클라우드를 생성하는 특징 때문에 압축 과정에서 발생하는 영상 정보의 열화는 포인트 클라우드의 품질에 영향을 미친다. 이와 마찬가지로 추가적인 기술을 사용한 2차원 영상 정보의 향상으로 포인트 클라우드의 품질을 향상할 수 있을 것으로 예상된다. 이에 본 논문은 V-PCC 기술에서 생성되는 영상 정보에 2차원 보간 (Interpolation) 기술을 적용하여 기존의 영상 정보에 포함되지 않은 추가적인 포인트를 생성하는 것으로 재구성되는 포인트 클라우드의 밀도를 증가시키고 그 영향을 분석하고자 한다.

목차

요약
1. 서론
2. Video-based Point Cloud Compression
3. 포인트 클라우드 2차원 보간 방안
4. 실험결과
5. 결론
참고문헌 (References)

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0