메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seong-Min Kim (The Gyeonggi Province Maritime and Fisheries Research Institute) Ji-Sung Choi (The Gyeonggi Province Maritime and Fisheries Research Institute) Byung-Kwon Kim (The Gyeonggi Province Maritime and Fisheries Research Institute) Jae-Yong Bae (The Gyeonggi Province Maritime and Fisheries Research Institute) Jung-Jo Han (The Gyeonggi Province Maritime and Fisheries Research Institute) Sang-Woo Lee (The Gyeonggi Province Maritime and Fisheries Research Institute)
저널정보
한국수산과학회 양식분과 한국수산과학회 양식분과 학술대회 2021 Conference on the Future Technology of Fisheries Science [3개 분과 공동개최]
발행연도
2021.4
수록면
223 - 223 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Laver is the oldest major aquaculture species in Korea, and has been developing and devising methods to increase aquaculture productivity, which is starting with the aquaculture method using bamboo sheaths. As a result, laver production has also increased rapid progress. <br?>In particular, seaweed aquaculture in Gyeonggi-do is an important industry, as more than 80% of the aquatic production is produced by laver. However, Gyeonggi-do laver aquaculture is conducted by using conchocelis grown in Jeonnam and Chungnam regions, and there is a problem of location adaptation. So, in spite of the environmental conditions suitable for laver aquaculture, there is an economic disadvantage.
In order to develop and test suitable conchocelis for Gyeonggi-do, this study established an indoor culture system and conducted basic research for conchocelis production. So, Gyeonggi- bay laver was collected and induced conchocelis. For cultivate and manage conchocelis, a culture table with adjustable light intensity of 200-10,000lx was installed. If necessary, pipes with housing filters wer ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-529-001945102