메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeji Lee (University of Basel)
저널정보
한국응용언어학회 응용언어학 응용언어학 제37권 특별호
발행연도
2021.7
수록면
117 - 160 (44page)
DOI
10.17154/kjal.2021.7.37.Special.117

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study examines patterns of users’ first turns in their interaction with a service chatbot developed by a team in the Department of Computer Science and Engineering at Sogang University, South Korea. The user’s first turn is where the user produces their initial request to the chatbot based on a task prompt that is given to them. This is a crucial site that can project the trajectory of the conversational dialogue in the next turns. The data for this study is a corpus of 456 conversational dialogues between human users and the service chatbot for the task of scheduling (e.g., creating/deleting/changing schedules). Analyses reveal three main patterns emerging from users’ first turns: (1) naming main request; (2) prefacing another request; and (3) aggregating task prompt. These patterns are described as users’ sense-making practices which demonstrate their understanding of the task prompt presented to them as well as how they interpret the underlying mechanism of the chatbot. The first and second patterns, in particular, are illustrative of discrepancies in assumptions between human users and chatbot developers. The study provides practical implications for chatbot developers and discusses the utility of Conversation Analysis (CA) as a methodology to investigate human-chatbot interaction.

목차

Ⅰ. INTRODUCTION
Ⅱ. LITERATURE REVIEW
Ⅲ. METHODOLOGY
Ⅳ. ANALYSIS
Ⅴ. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-701-001912756