메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Khine Zar Wai (Chungnam National University) Seungjee Hong (Chungnam National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.48 No.1
발행연도
2021.3
수록면
59 - 71 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigated the extent to which rice producers from the Ayeyarwaddy Region of Myanmar could improve their productivity if inputs were used efficiently in rice cultivation. To achieve this objective, simple random sampling was used to collect data from 300 rice growers in the study area. Data were analyzed with the translog stochastic frontier approach to understand the production efficiencies. The study further estimated the influencing factors that affect the efficiency levels of rice farmers. The empirical result reveals that the average technical, allocative, and economic efficiencies were at 76.11, 47.85, and 34.15%, respectively. This suggests that there is considerable room for improving rice production by better utilization of the available resources at the current level of technology. This study suggests that strenthening agricultural training programs and adoption of improved rice varieties may reduce overall inefficiencies among rice farmers in Myanmar. Factors like age, household size, education, farming experience, farm size, rice variety, training, and off-farm income have a significant impact on increasing/decreasing farmer’s efficiency. Efficiency can be improved by establishing farmer field school programs to increase the scale of operations. The government should encourage young educated people to participate in paddy production and also intervene to reduce input prices and control the quality of seeds.

목차

Abstract
Introduction
Materials and methods
Results and discussions
Conclusions
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-520-001687595