메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
DongNyeong Heo (Handong Global University) Stanislav Lange (Norwegian University of Science and Technology) Hee-Gon Kim (Pohang University of Science and Technology) Heeyoul Choi (Handong Global University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
7 - 12 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Software-defined networking (SDN) and the network function virtualization (NFV) led to great developments in software based control technology by decreasing expenditures. Service function chaining (SFC) is an important technology to find efficient paths in network servers to process all of the requested virtualized network functions (VNF). However, SFC is challenging since it has to maintain high Quality of Service (QoS) even for complicated situations. Although some works have been conducted for such tasks with high-level intelligent models like deep neural networks (DNNs), those approaches are not efficient in utilizing the topology information of networks and cannot be applied to networks with dynamically changing topology since their models assume that the topology is fixed. In this paper, we propose a new neural network architecture for SFC, which is based on graph neural network (GNN) considering the graph-structured properties of network topology. The proposed SFC model consists of an encoder and a decoder, where the encoder finds the representation of the network topology, and then the decoder estimates probabilities of neighborhood nodes and their probabilities to process a VNF. In the experiments, our proposed architecture outperformed previous performances of DNN based baseline model. Moreover, the GNN based model can be applied to a new network topology without re-designing and re-training.

목차

Abstract
I. INTRODUCTION
II. BACKGROUND
III. GNN-BASED SERVICE FUNCTION CHAINING
IV. EXPERIMENTS AND RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678666