메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Suhyun Park (Pohang University of Science and Technology) Hee-Gon Kim (Pohang University of Science and Technology) Jibum Hong (Pohang University of Science and Technology) Stanislav Lange (Norwegian University of Science and Technology) Jae-Hyoung Yoo (Pohang University of Science and Technology) James Won-Ki Hong (Pohang University of Science and Technology)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
67 - 72 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment in consideration of the cost and Quality of Service (QoS) is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point when the deployment decision is applied because it takes processing time to apply the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain optimal VNF deployment and Service Function Chaining (SFC) result from an Integer Linear Programming (ILP) solution. We use the simulation data to train a machine learning model which predicts the optimal VNF deployment at a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution for the 5-minute future time point.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. DESIGN AND IMPLEMENTATION
IV. PERFORMANCE EVALUATION
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678459