메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현호 (부산대학교) 채흥석 (부산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.3
발행연도
2021.3
수록면
284 - 292 (9page)
DOI
10.5626/JOK.2021.48.3.284

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
우수한 성능의 CNN일지라도 실제 환경을 예상한 테스트 데이터셋 상의 오류인 일반화 오류는 높게 나오는 경우가 있다. 이 일반화 오류를 줄여서 모델이 실제 환경에서도 학습된 성능이 유지될 수 있도록 해야 한다. 본 논문에서는 데이터 다양성이 높은 학습 데이터셋을 통해 학습한 모델이 클래스별로 자주 활성화하는 뉴런 셋을 반응 셋이라 정의한다. 또한 테스트 데이터셋의 데이터 다양성에 따른 일반화 오류의 차이도 고려한다. 본 논문은 이 차이를 상대적 일반화 오류라 정의한다. 본 논문에서는 CNN의 클래스별 반응 셋과 상대적 일반화 오류의 관계를 이용하여서 학습 데이터셋 만을 이용한 CNN의 일반화 오류의 평가 방법을 제안한다. 사례연구를 통해 반응 셋 비율이 상대적 일반화 오류와 관계가 있음을 확인하였으며 본 논문에서 제안한 학습 데이터를 이용한 CNN의 일반화 오류의 평가 방법이 효과적임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 상대적 일반화 오류
3. 실험 환경
4. 실험 결과
5. 관련 연구
6. 결론 및 향후 연구
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0