메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dongsu Lee (Chonnam National University) Seungmin Oh (Chonnam National University) Jihoon Lee (Chonnam National University) Yeonggwang Kim (Chonnam National University) Sangjoon Lee (Chonnam National University)
저널정보
한국디지털콘텐츠학회 The Journal of Contents Computing JCC Vol.2 No.2
발행연도
2020.12
수록면
185 - 197 (13page)
DOI
10.9728/jcc.2020.12.2.2.185

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Research on the detection of dangerous areas such as potholes and black ice, which can cause traffic accidents on roads and bridges, helps maintain faster and smoother traffic flow and is essentially essential in protecting the lives and property of drivers and pedestrians. In this dissertation, we propose a deep learning model that can detect dangerous regions such as potholes and black ice. To learn and evaluate the proposed deep learning model, we collect 806 images for pothole detection, 1,000 images for black ice detection. Subjectively/objectively evaluating the performance of the proposed deep learning model, we derive 95% accuracy for pothole detection and 79% accuracy for black ice detection. This study was limited to not being able to practice in real-time road driving situations, and the next study is to implement real-time output of the results with respect to the hazardous areas detected by the camera. This will also be used for research related to smart factories, smart cities and eco-friendly cars that require hard real-time such as traffic control systems, airport control systems, and satellite launch control systems in the future.

목차

Abstract
1. Introduction
2. Related Works
3. Research Method
4. Experimental and Result
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001465478