메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyoung Jin Kim (Konkuk University) Hong Sung Mun (Konkuk University) Jae Bong Chang (Konkuk University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.47 No.4
발행연도
2020.12
수록면
769 - 782 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Interest in fruit and vegetables has increased due to changes in consumer consumption patterns, socioeconomic status, and family structure. This study determined the factors influencing the demand for fruit and vegetables (strawberries, paprika, tomatoes and cherry tomatoes) using a panel of Rural Development Administration household-level purchases from 2010 to 2018 and compared the ability to the prediction performance. An artificial neural network model was constructed, linking household characteristics with final food expenditure. Comparing the analysis results of the artificial neural network with the results of the panel model showed that the artificial neural network accurately predicted the pattern of the consumer panel data rather than the fixed effect model. In addition, the prediction for strawberries was found to be heavily affected by the number of families, retail places and income, while the prediction for paprika was largely affected by income, age and retail conditions. In the case of the prediction for tomatoes, they were greatly affected by age, income and place of purchase, and the prediction for cherry tomatoes was found to be affected by age, number of families and retail conditions. Therefore, a more accurate analysis of the consumer consumption pattern was possible through the artificial neural network model, which could be used as basic data for decision making.

목차

Abstract
Introduction
Material and Methods
Results and Discussion
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-520-001435664