메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Runmei Ma (Beijing University of Chemical Technology) Tianxin Ma (Tianhua Research Institute of Chemical Machinery and Automation)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.13 No.4
발행연도
2020.12
수록면
683 - 691 (9page)
DOI
10.5293/IJFMS.2020.13.4.683

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The impeller-volute interaction flow in centrifugal pump is influenced by the flow in impeller-tongue gap. In order to completely understand the mechanism of interaction between impeller-volute flow and impeller-tongue gap flow, a transient three-dimensional numerical simulation of the flow in a single stage centrifugal pump was carried out by applying sliding mesh approach and the standard k-ε turbulence model in CFD, and the derived transient flow data were time-averaged over a period of one blade passing the tongue. The analysis of the flow in the pump revealed that under off-design conditions, a reversed flow with lower pressure at small flowrates below the dutypoint or a stagnation region with higher pressure at high flowrates above the dutypoint appeared in the near tongue region in volute, which enhanced the asymmetric flow in impeller channels. It was consequently considered that the flow in impeller-tongue gap was a superposition of a drag flow by impeller and a pressure leakage flow driven by pressure difference between two sides of the tongue, and the pressure difference was zero at design condition, but increased with the deviation degree of the flow in impeller from the dutypoint. Under smaller flowrates, the gap leakage flow has direction opposite to that at higher flowrates, and affects much the volute flow. In the end, based on the analytical results, a semi-empirical model for the volute flow was deduced by one-dimensional flow continuity, and it may supply a reference for optimizing the flow in volute.

목차

Abstract
1. Introduction
2. Numerical Simulation Method
3. Flow Field Analysis
4. Mechanism for Coupled Flow in Impeller and Volute
5. A Model for the Volute Flow with Interaction of Impeller-Tongue Gap Flow
6. Conclusions
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-554-001444501