메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeon-Seok Shim (Inha University) Kwang-Yong Kim (Inha University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.10 No.3
발행연도
2017.9
수록면
218 - 226 (9page)
DOI
10.5293/IJFMS.2017.10.3.218

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Severe radial thrust under off-design operating conditions can be a harmful factor for centrifugal pumps. In the present work, effects of geometry of a double volute casing on the hydrodynamic performance of a centrifugal pump have been investigated focusing on off-design conditions. Three-dimensional steady Reynolds-averaged Navier-Stokes analysis was carried out by using shear stress transport turbulence model. Numerical results for the hydrodynamic performance of the centrifugal pump were validated compared with experimental data. The hydraulic efficiency and radial thrust coefficient were used as performance parameters to evaluate the hydrodynamic characteristics of the centrifugal pump. The cross-sectional area ratio of the volute casing, the expansion coefficient of the rib structure, the distance between the rib starting point and volute entrance, and radius and width of the volute entrance, and length of the rib structure, were selected as geometric parameters. Results of the parametric study show that the performance parameters are significantly affected by the geometric variables and operating conditions. Optimal configurations of the double volute casing based on the design of experiments technique show outstanding performance in terms of the efficiency and radial thrust coefficient.

목차

Abstract
1. Introduction
2. Specifications of Centrifugal Pump
3. Numerical Methods
4. Geometric and Performance Parameters
5. Results and Discussion
6. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-554-001894684