메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한재승 (국민대학교) 심보연 (국민대학교) 임한섭 (국민대학교) 김주환 (국민대학교) 한동국 (국민대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제6호
발행연도
2020.12
수록면
1,291 - 1,300 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝 기반 비프로파일링 부채널 분석이 제안됐다. 딥러닝 기반 비프로파일링 분석은 신경망 모델을 모든 추측키에 대해 학습시킨 뒤, 학습된 정도의 차이를 통해 올바른 비밀키를 찾아내는 기법이다. 이때, 신경망 학습모델 설계에 따라 비프로파일링 분석성능이 크게 달라지기 때문에 올바른 모델 설계의 기준이 필요하다. 본 논문은 학습모델 설계에 사용 가능한 2가지 loss 함수와 8가지 label 기법을 설명하고, 비프로파일링 분석과 소비전력모델 관점에서 각 label 기법의 분석성능을 예측했다. 해밍웨이트 소비전력모델을 가정했을 때의 비프로파일링 분석 특징을 고려해서 One-hot인코딩을 적용하지 않은 HW(Hamming Weight) label과 CO(Correlation Optimization) loss를 적용한 학습모델이 가장 좋은 분석성능을 가질 것으로 예측했다. 그리고 AES-128 1라운드 Subbytes 연산 부분 데이터 집합 3가지에 대해 실제 분석을 수행했다. 제시한 각 label 기법과 loss 함수를 적용한 총 16가지 MLP(Multi-Layer Perceptron)기반 학습모델로 두 데이터 집합을 비프로파일링 분석하여 예측에 대해 검증했다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 비프로파일링 분석을 위한 효과적인 모델 설계
IV. 실험 결과
V. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001438819