메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권동근 (고려대학교) 진성현 (고려대학교) 김희석 (고려대학교) 홍석희 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제3호
발행연도
2019.6
수록면
491 - 501 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 보안 디바이스의 물리적 취약성을 찾을 수 있는 부채널 분석 분야에서 딥러닝을 활용한 연구가 활발히 진행되고 있다. 하지만, 최신 딥러닝 기반 부채널 분석 기술 연구는 템플릿 공격 등과 같은 프로파일링 기반 부채널 분석환경에서 파형을 옳게 분류하기 위한 연구에 집중되어 있다. 본 논문에서는 이전 연구들과 다르게 딥러닝을 신호 전처리 기법으로 활용하여 차분 전력 분석, 상관 전력 분석 등과 같은 논프로파일링 기반 부채널 분석의 성능을 고도화 할 수 있는 방법을 제안한다. 제안기법은 오토인코더를 부채널 분석 환경에 적합하게 변경하여 부채널 정보의 노이즈를 제거하는 전처리 기법으로, 기존 노이즈 제거 오토인코더는 임의로 추가한 노이즈에 대한 학습을 하였다면 제안하는 기법은 노이즈가 제거된 라벨을 사용하여 실제 데이터의 노이즈를 학습한다. 제안기법은 논프로파일링 환경에서 수행 가능한 전처리 기법이며 하나의 뉴런 네트워크의 학습만을 통해 수행할 수 있다. 본 논문에서는 실험을 통해 제안기법의 노이즈 제거 성능을 입증하였으며, 주성분분석 및 선형판별분석과 같은 기존 전처리 기법들과 비교하여 우수하다는 것을 보인다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. Side-Channel Preprocess based on Deep Learning
IV. 실험
V. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000879955