메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김주환 (국민대학교) 우지은 (국민대학교) 박소연 (국민대학교) 김수진 (국민대학교) 한동국 (국민대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제6호
발행연도
2020.12
수록면
1,271 - 1,278 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기반 프로파일링 부채널 분석은 신경망을 이용해 부채널 정보와 중간값의 관계를 파악하는 공격 방법이다. 신경망은 신호의 각 시점을 별도의 차원으로 해석하므로 차원별 가중치를 갖는 신경망은 지터가 있는 데이터의 분포를 학습하기 어렵다. 본 논문에서는 CNN(Convolutional Neural Network)의 완전연결 층을 GAP(Global Average Pooling)로 대체하면 태생적으로 지터에 강건한 신경망을 구성할 수 있음을 보인다. 이를 입증하기 위해 ChipWhisperer-Lite 전력 수집 보드에서 수집한 파형에 대해 실험한 결과 검증 데이터 집합에 대한 완전연결 층을 사용하는 CNN의 정확도는 최대 1.4%에 불과했으나, GAP를 사용하는 CNN의 정확도는 최대 41.7%로 매우 높게 나타났다.

목차

요약
ABSTRACT
I. 서론
II. 딥러닝 기반 프로파일링 부채널 분석
III. 지터에 강건한 프로파일링 부채널 분석
IV. 실험 결과
V. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001438793