메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
You-min Na (Yonsei University) Dong-hwan Hyun (Yonsei University) Do-hyun Park (Yonsei University) Se-hyun Hwang (Yonsei University) Soo-hong Lee (Yonsei University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제12호(통권 제201호)
발행연도
2020.12
수록면
63 - 71 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 최근 가장 신뢰도 높은 인공지능 탐지 알고리즘인 YOLOv3와 EfficientDet을 이용한 화재 탐지 기술과 문자, 웹, 앱, 이메일 등 4종류의 알림을 동시에 전송하는 알림서비스 그리고 화재 탐지와 알림서비스를 연동하는 AWS 시스템을 제안한다. 우리의 정확도 높은 화재 탐지 알고리즘은 두 종류인데, 로컬에서 작동하는 YOLOv3 기반의 화재탐지 모델은 2000개 이상의 화재 데이터를 이용해 데이터 증강을 통해 학습하였고, 클라우드에서 작동하는 EfficientDet은 사전학습모델(Pretrained Model)에서 추가로 학습(Transfer Learning)을 진행하였다. 4종류의 알림서비스는 AWS 서비스와 FCM 서비스를 이용해 구축하였는데, 웹, 앱, 메일의 경우 알림 전송 직후 알림이 수신되며, 기지국을 거치는 문자시스템의 경우 지연시간이 1초 이내로 충분히 빨랐다. 화재 영상의 화재 탐지 실험을 통해 우리의 화재 탐지 기술의 정확성을 입증하였으며, 화재 탐지 시간과 알림서비스 시간을 측정해 화재 발생 후 알림 전송까지의 시간도 확인해보았다. 본 논문의 AI 화재 탐지 및 알림서비스 시스템은 과거의 화재탐지 시스템들보다 더 정확하고 빨라서 화재사고 시 골든타임 확보에 큰 도움을 줄 것이라고 기대된다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Integrated System
IV. Experiment
V. Results
VI. Conclusions
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0