메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서동우 (한국과학기술정보연구원) 허태상 (한국과학기술정보연구원) 김명일 (한국과학기술정보연구원) 오재원 (한국해양과학기술원) 조수길 (한국해양과학기술원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제11호
발행연도
2020.11
수록면
672 - 682 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 다양한 산업/제조 현장에서 운영 효율화를 위한 디지털 트윈(digital twin) 기술 연구가 활발하게 수행중이고, 화석 연료의 점진적 고갈과 환경오염 문제는 파력발전소와 같은 신재생/친환경 발전방식을 요구한다. 하지만, 파도의 에너지에 의해서 전기를 생산하는 파력발전에서 변동성이 높은 파도에너지에 의해서 발전량과 고장 등의 운영효율화 요소가 밀접하게 관련되어 있어 이들 사이의 관계를 이해하고 예측하는 것이 매우 중요하다. 따라서 첫 번째로 파고 데이터, 진동수주(OWC: Oscillating Water Column, 이하 OWC) 챔버의 센서 데이터 등과 같은 변동성이 높은 데이터 간에 의미 있는 상관관계 도출이 필요하다. 두 번째로 도출된 상관관계를 기반으로 추출된 데이터로 예측 상황을 학습함으로써 원하는 정보를 예측할 수 있는 방법론 연구가 이루어져야 한다. 본 연구에서는 파력발전 시스템의 디지털 트윈으로 스마트 운용 및 유지보수가 가능하도록 실제 파력발전소의 IoT 센서 데이터를 이용하여 OWC의 압력 예측을 위해 머신러닝 프레임워크를 활용한 워크플로우 기반의 학습모델을 설계하고, 검증 및 평가 데이터셋을 통한 압력 예측분석의 유효성을 확인한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. OWC 압력 예측 학습모델 설계
4. 학습모델 구현 및 평가
5. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0