메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Julia Baumgärtner (FAU Erlangen-Nürnberg) Henrik Bey (FAU Erlangen-Nürnberg) Dennis Faßbender (AUDI AG) Jörn Thielecke (FAU Erlangen-Nürnberg)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
761 - 768 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Automated vehicles perceive only a small part of their environment. Especially unobservable vehicles pose a significant risk. To achieve safe but also comfortable behavior, potential, unobservable vehicles must be considered in behavior planning. Conventional methods use solely the current observation of the environment to determine potential obstacles. Past observations are rarely considered, although these may contain helpful information to rule out potential obstacle positions. This paper presents a novel algorithm that uses past observations besides the current observation to determine possible obstacle states. By means of a particle filter, we iteratively predict and filter feasible states of a potential obstacle. This results in a probability distribution for the position and velocity of an unobservable obstacle. We furthermore present a concept for the interface between our method and a basic behavior planning algorithm. The real-time capable method is tested on both simulated and real-world data. By comparing the algorithm to a baseline algorithm which uses only the current observation, we show that our algorithm prevents overly cautious assumptions about a potential obstacle’s state in certain situations. As a result, a more comfortable driving behavior can be achieved.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. METHOD
4. EVALUATION
5. CONCLUSIONS AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569605