메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Panashe Sabau (University of the West of England) Jun Jie Chong (Newcastle University) Aghil Jafari (University of the West of England) Subham Agrawal (University of the West of England) Chathura Semasinghe (University of the West of England) Appolinaire Etoundi (University of the West of England)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
396 - 401 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to users discontinuing use of their socket and subsequently reducing their long-term mobility; negatively impact their psychological health; and prolong rehabilitation. This paper continues the research conducted in earlier publications [1], [2], which introduced the concept of an automated ISO standard robotic testing rig to test a full artificial limb prosthesis (a bio-inspired transfemoral prosthetic socket attached to robotic prosthetic joints and an ankle joint). This paper presents an automated method of designing the bio-inspired socket using artificial intelligence to reduce discomfort and the design time of new or existing full artificial lower limbs using qualitative and quantitative data. The socket will be tested in a gait simulation shown in the figure 7, to safely achieve desirable walking velocities, step length, safety and comfort while consequentially reducing the physical testing on patients and consequentially reduce physical testing on patients.

목차

Abstract
1. INTRODUCTION
2. TRANSFEMORAL PROSTHETICSOCKET
3. EXPERIMENTS
4. DESIGN OVERVIEW
5. OPTIMISING PROSTHETIC SOCKETS USING GENERATIVE DESIGN
6. RESULTS
7. CONCLUSION AND DISCUSSING
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001570322