메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yan Li (Shaanxi University of Science & Technology) Zhen Hu (Shaanxi University of Science & Technology) Ceng-fei (Shaanxi University of Science & Technology) Yun Qing-yu Dai (Shaanxi University of Science & Technology)
저널정보
한국펄프·종이공학회 펄프·종이기술 펄프·종이기술 제52권 제5호(통권 제196호)
발행연도
2020.10
수록면
31 - 44 (14page)
DOI
10.7584/JKTAPPI.2020.10.52.5.31

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
About the problem of low thermal efficiency of alkali recovery furnace in pulping mills, we carry out research on the problem from the perspective of optimization of thermal efficiency. First, we deduced the relationship between the thermal efficiency of thealkali recovery furnace and the oxygen content of flue gas, the CO content, the exhaust temperature, the carbon content of the soda ash. Then, by adjusting the set value of oxygen content, we got the relevant data of the heat loss variables under different working conditions. According to this data, the relationship between thermal efficiency and heat loss variables was converted into a thermal efficiency model only about the oxygen content of flue gas. Then, we used the penalty method to convert the thermal efficiency model into a composite thermal efficiency model that considers NOx emissions. According to the different emphasis on thermal efficiency and NOx emission concentration, BFGS quasi-Newton method was used for optimization test. Finally, we input the optimization results into the actual system. The operating results show that the thermal efficiency model and its optimization results can not only improve the thermal efficiency of the alkali recovery furnace, but also effectively reduce the NOx emissions.

목차

ABSTRACT
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Literature Cited

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-586-001591569