메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sanghyeon Lee (Gangneung-Wonju National University) Taeo Kim (Gangneung-Wonju National University) Duckki Lee (Yonam Institute of Technology) Sung Wook Park (Gangneung-Wonju National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.5
발행연도
2020.10
수록면
345 - 352 (8page)
DOI
10.5573/IEIESPC.2020.9.5.345

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To predict the remaining operational time of a battery is important in electric vehicle (EV) operation. However, the nonlinear characteristics of battery cells and the different driving patterns of people hinder that prediction. Furthermore, the aging characteristics of battery cells make predictions even more difficult. This paper presents a deep learning system that warns drivers that an EV may not be drivable in a short time. The training dataset reflects the nonlinearity of battery cells, random driving patterns, and the aging characteristics of battery cells, with values normalized to cover various forms of battery packs, which are combinations of battery cells. The performance of the proposed warning system shows around 99% accuracy for constant-speed driving situations and around 78% accuracy for random driving patterns, with the warning designed to be given three minutes before full battery discharge.

목차

Abstract
1. Introduction
2. Related Works
3. Architecture of the Warning System
4. Training Procedure
5. Performance Evaluation
6. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0