메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장대호 (Korea Aerospace University) 김현 (Korea Aerospace University) 정윤호 (Korea Aerospace University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제3호
발행연도
2020.9
수록면
783 - 790 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 실내 보안 응용을 위한 사람 감지 레이다 시스템을 제안하고, 이의 FPGA 기반 설계 및 구현 결과를 제시하였다. 연산의 복잡도와 메모리 요구량을 최소화하기 위해 스펙트로그램의 상측 절반만 특징점 추출에 사용하였으며, 복잡한 연산이 필요한 특징점 추출기법을 배제하고, 분류 성능과 연산 복잡도를 고려한 효율적인 특징점 추출기법이 제안되었다. 또한, 전체 스펙트로그램에 대한 저장이 불필요한 파이프라인 구조로 설계하여 메모리 요구량을 최소화하였다. 제안된 시스템의 분류 학습을 위해 사람, 개, 로봇 청소기에 대한 실험이 수행되었고, 96.2%의 정확도 성능을 확인하였다. 제안된 시스템은 Verilog-HDL을 이용하여 구현되었으며, 1140개의 logic과 6.5 Kb의 메모리를 사용하는 저면적 설계가 가능함을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 제안된 시스템의 개요 및 알고리즘
Ⅲ. 제안된 시스템의 분류 성능 평가
Ⅳ. 하드웨어 구조 설계 및 구현
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0