메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최영웅 (Korea Aerospace University) 임재형 (Korea Aerospace University) 김건우 (Korea Aerospace University) 정윤호 (Korea Aerospace University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제1호
발행연도
2020.3
수록면
200 - 207 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 보안 감시용 레이다 시스템을 위한 저복잡도 특징점 추출기를 제안하고, 이의 FPGA 기반 설계 결과를 제시하였다. 특징점 추출기의 메모리 요구량을 최소화하기 위해 레이다 스펙트로그램 전체에 대한 통계처리를 요구하는 프레임 단위의 특징점을 배제하고, 단위 도플러 프로파일에서 추출 가능한 특징점을 적용하였다. 제안된 특징점 추출기는 Verilog-HDL을 이용하여 RTL 설계 후, Xilinx Zynq-7000 FPGA를 활용하여 구현되었으며, 기존 연구대비 58.3%의 slice 및 98.3%의 메모리 요구량을 감소 가능함을 확인하였다. 또한, 제안된 특징점 추출기가 통합된 레이다 기반 보안 감시 시스템을 통해 차, 자전거, 보행자 및 전동 킥보드에 대한 분류 실험이 수행되었고, 성능 분석 결과 93.4%의 정확도 성능을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 레이다 기반 타겟 인식 시스템 개요
Ⅲ. 제안하는 특징점 추출 기법
Ⅳ. 하드웨어 구조 설계 및 구현
Ⅴ. 하드웨어 구현 결과 및 실험 결과
Ⅵ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000547142