메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김세운 (광운대학교) 박광현 (광운대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제13권 제1호
발행연도
2018.3
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The image-to-image translation is one of the deep learning applications using image data. In this paper, we aim at improving the performance of object transfiguration which transforms a specific object in an image into another specific object. For object transfiguration, it is required to transform only the target object and maintain background images. In the existing results, however, it is observed that other parts in the image are also transformed. In this paper, we have focused on the structure of artificial neural networks that are frequently used in the existing methods and have improved the performance by adding constraints to the exiting structure. We also propose the advanced structure that combines the existing structures to maintain their advantages and complement their drawbacks. The effectiveness of the proposed methods are shown in experimental results.

목차

Abstract
1. 서론
2. 관련연구
3. 제안하는 방법
4. 실험
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-559-001256871