메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Di Wu (China University of Mining and Technology-Beijing) Wentao Hou (China University of Mining and Technology-Beijing) Shuai Liu (China University of Mining and Technology-Beijing) Huaibin Liu (China University of Mining and Technology-Beijing)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.14 No.5
발행연도
2020.9
수록면
777 - 790 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Cemented paste backfill (CPB), which is prepared by mixing tailings, binder and water, is widely used in underground mines for waste management and ground control. Since the CPB is delivered into mined-out areas in the form of fluid, a barricade needs to be constructed for retaining it during the process of its filling and hardening. Therefore, the barricade should have enough mechanical stability to ensure the safety of the backfill operation. The behavior of CPB, which is influenced by the thermal, hydraulic, mechanical and chemical (THMC) coupled processes, acts on the barricade and thus affects its mechanical response. In the present study, a numerical model is developed to predict and analyze the barricade mechanical performance in response to the coupled THMC behavior of CPB. The validity of the proposed model is then verified against two field case studies. Acceptable agreement between the model prediction results and in situ monitoring data proves the capability of the developed model in simulating the barricade pressure and displacement. Then, the validated model is used to investigate the effect of filling strategy on the barricade displacement. The obtained results can contribute to a better understanding of the barricade performance under various backfill conditions.

목차

Abstract
1. Introduction
2. Governing Equations of the Numerical Model
3. Validation of the Developed Model
4. Model Application
5. Conclusions
References

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-532-001290767